Lecture 10

The Huckel Model
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Semiempirical Methods

It is difficult to apply ab initio methods to medium and large

molecules, therefore many semiempirical methods have been

developed to treat such molecules.

The earliest semiempirical methods treated only the &t electrons

of conjugated molecules.

1. We begins with w-electron semiempirical methods (Sections
17.1t0 17.3)

2. Then we considers general semiempirical methods (Section
17.4).

3. The molecular-mechanics method (Section 17.5) is a
nonguantum-mechanical method applicable to much larger
molecules than semiempirical methods.

Slide 2



Hlickel Molecular Orbital Model

Developed by Eric Hlckel in 1920’s to treat n-electron systems.
Extended by Roald Hoffman in 1963 to treat c-bonded systems.

The Huckel model has been largely superseded by more accurate
MO calculations. However, it is still useful to obtain qualitative
predictions of bonding and reactivity in conjugated © systems.

The earliest semiempirical methods for planar conjugated organic
compounds treated the &t electrons separately from the o electrons.

1.

Coulson stated that the justification for the o— rt separability
approximation lies in the different symmetry of the ¢ and = orbitals and
In the greater polarizability of the = electrons, which makes them more
susceptible to perturbations such as those occurring in chemical reactions.
In the w-electron approximation, the n_ -n electrons are treated
separately by incorporating the effects of the electrons and the nuclei

Into some sort of effective w electron Hamiltonian Hr
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Assumptions

1. The o and = electrons are independent of each other.

The = electrons move in the constant electrostatic potential
created by the o electrons.

2. The carbons are sp? hybridized.

The remaining p, orbital is perpendicular to the c molecular
framework.

3. The & electron Molecular Orbitals are linear combinations of
the p, orbitals (y;).

0= Z CiZ = Codat Cpplg t 0 gt
j

4. The total © electron Hamiltonian is a simple sum of effective
one electron Hamiltonians.

Ho=) hi=h+h,+h+-
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Linear Equations and Secular Determinant

(”izzcijlj - H:Zhi
j i

Variational lMethod

N
Y ¢(H;-ES;)=0 One has N equations, where

j=1 l N is the number of carbon atoms.
- ESy|=0
H11 - ESll H12 - ESlZ H12 - ESlN
H21_E821 sz_Esz H2N _ESZN ~0
HNl_ESNl HNZ_ESNZ HNN _ESNN
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Additional Assumptions

H11 - ES11 H12 - ESlZ HlN - ES1N
H21_E821 sz_Eszz HZN_ESZN ~0
HNl_ESNl HNZ_ESNZ HNN_ESNN

. The Orbitals are Normalized: S;=1

The overlap between orbitals is O: S;j=0 (1))

. The diagonal Hamiltonian elements are given by
an empirical parameter, o

. Off-diagonal Hamiltonian elements are given by
an empirical parameter, 3, if the carbons are adjacent

H; = B: Adjacent Carbons
H; = 0: Non-Adjacent Carbons

Note: a<0 and B<0
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Parameter Values
What is the value of a?

Who cares?

Since a cancels out in almost all applications, such as transition or
reaction energies.

What is the value of 37

Who knows?
Estimates of the “best” value of  vary all over the place.

As noted in the text, values ranging from —30 kcal/mol to -70 kcal/mol
(-130 to -290 kJ/mol) have been used.

For lack of anything better, we’'ll use 3 = -200 kJ/mol.
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Application to Ethylene (C,H,)

Secular Determinant and Energies

H11 N ESll H12 N ESlZ
H12 N ESlZ H 22 ESzz

l Put in Hickel matrix elements

a-E bl
p a-E|

Divide all terms

_a-E
by B and definex by = g

X 1
1 X

[
(@)
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X 1
=0
1 X
x*-1=0
a-E / \ _
X =-1= ﬂl X2:+1:a,8E2
E,=a+p E,=a-p
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Molecular Orbitals

a-E bl
I a-E|

l P=Cr+C7,

(a—E)c,+fc,=0
e +(a-E)c, =0

lor
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0=Cx,+C7, — =X
Gy
=-1 C
% —_— “=tl — =
E1:0H-,B C1

Normalization: 1= {p|o)= (c.z,+ ¢, 1, |cr +¢,0y)

1=¢ <11|Zl>+ C1C2<ZI|ZZ>+ 02C1<12|;(1>+ 022<h|12>
l=¢/+¢;

Note: For Hiickel calculations, the normalization
condition is always: ) ¢/ =1

L=¢ +¢ 1
_— (/)1=—f(zl+zz)
7

¢, =C,
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X, =+1

E,=a-p
l=¢ +¢,
G, = =G

C_2:_1 —l
1
1
?, :ﬁ(h_lz)

Bonding Orbital

Antibonding Orbital

Slide 12



Electrons are delocalized in ¢,
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Application to the Allyl Radical (C;Hce)

C
\C et 'Z\X*C / The Allyl radical has 3 &t electrons
T 3

/

\
\

Secular Determinant and Energies

H11 - Esll
H12 a ESlZ
H13 a ESlS

H12 - ESlZ
sz a Eszz
H23 a E523

H13 - ESlS
H23 o Est
H33 a E833

=0
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Divide by B
>

Define
_a—E

O B X

= X<
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x 1 0 1) xc,+¢,=0 From 1) ¢, = —xc,
1 x 1|=0—> 2) ¢, +xC,+C,=0 From 2) ¢, =-¢, - Xc,
0 1 x 3) C2+XC3:O From 3) ng_lcz
X
C, :_(_ﬁ)clzﬁcl C, =—(0)c1=0
= _\/2: — 1 X2 :0 — ( )
c,=-C —(0)c, =-c¢C
C3 :——C2 :C1 3 1 2 1
2
Normalization Normalization

2
C12+(‘5¢1) ! cf+(0)2+(—c1)2:1

1 1
C]_:E Cl:_z
1 1
¢1:_(Zl+ﬁ7(2+7(3) (Dzzﬁ(ll )(3)
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o b X
T
< P O

1) xc,+¢, =0 From 1) ¢, =—xc,
=0 —> 2) ¢ +Xxc,+¢, =0 From 2) ¢;=-¢ ~Xxc,
3) ¢, +xc; =0 From 3) ce,:—lc2

c, = —(+\E)cl = -2,

Cs

X3:+x/2: —

Gy

1
=———0C, =
2

Normalization
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Wavefunction Check

You can always check to be sure that you've calculated the
wavefunction correctly by calculating the expectation value
of E and see if it matches your original calculated value.

We'll illustrate with ¢.
1

E = (ps[H[0s)= <§(11- V2, + 14)

H ‘%(zl -2y, 4 13)>

(1 |H |;(1>—\/§<;(1|H FARIVALIVY
== V2 (2, H| 2+ 2(x, [H | 22) -2 (1| H | 25)

(| H ) = V2 (6 H | 20) + (26| H 20)

A

:Ha-ﬁwo—ﬁmza-ﬁmo—ﬁﬂm}

E:%[4a—4ﬁﬂ}=a —«/2:/3 It checks!!
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E3:a—«ﬁﬂ

03 = %(ll_ﬁZZ-I-ZS)
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Delocalization Energy

The delocalization energy is the total = electron energy relative to the
energy of the system with localized = bonds.

‘ EDeloc - E;z ELoc ‘
N A A NV
Cr Cs C1 Cs
/ \ / \
E3:a—\ﬁﬂ E, =0 -
E,=a E,=a+f “
E1=0[ +\/2=ﬂ 1 ELOC:EC2H4+a
=2(a+pf)+a
ST o

Epee = 30+ 2428~ (3a + 28)
-2(V2-1)p=083p
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Part A: The Huckel Model and other Semiempirical
Methods

* Hickel Molecular Orbital Model
* Application to Ethylene

* Application to the Allyl Radical (C;Hc*)

* t Electron Charge and = Bond Order

* Application to Butadiene
* |Introduction of Heteroatoms

* Semiempirical methods for sigma bonded systems
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nt Electron Charge and n Bond Order

nt Electron Charge (aka w Charge Density)

The = electron charge on atom u is defined by:
orbs )
q, = Z n;C;,
¢, is the coefficient of the i'th. MO on atom p.

7t Bond Order

The = bond order between atoms u and v is defined by:

orhs
Z niCi,uCiv
i

P
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Application to the Allyl Radical

orbs

n Electron Charge: g, =Z n.c’

ol

) 1.(0) =1

1 1 1

A -V SR o
CRnT gt 0.~ S nei -2

I\)|I—‘

T orbs )
1 1 Q2:Znici2:2(
0:= 10 s |

ﬁl

orbs 1 2 [ 1)2
NCh=2|=| +1-|-—| =1
Tl :E: ivi3 ( ’ '\/ET
¢::£Z+—L%'+£Z orbs
RN R = Bond Order: p,, Zn, 4Ci

23:isnicizcigzz (Tj(%) +1. (0)(—%]z%:0.71
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Application to Butadiene

H
H2C C ) ]
\ / \ 1,3-Butadiene has 4 r electrons
(H3 CH,

Note: Application of the Hlckel theory to Butadiene is one of your
HW problems.

The solution is worked out in detail below. | will
just outline the solution.

Secular Determinant and Energies

a-E p 0 x 1 0 0

B a-E pB 0 0 Divide by [3> 1 x 10 0
0 g a-E p Define 0 1 x 1

0 0 p oa-E 0 0 1 X
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1 1
x{1 x 1(-110 x 1|+0-0=0
1

X

=0

O O 1 X

O «d1 X

—d X d O

X «—« O O

x{x(xz—1)—1(x—0)}—1{1(x2—1)—1(0—0)}:0

{x“—xz—xz}—[xz—l}:o

3yt 1=

i -

0.382 = x°

3-49-4
2

Yy =

o~ [
>
11
I —
= -+
l y
(e )
|
=
o~
>
[
oo
—i
o
(@
[
<
|
(@] o~
I_I
o

Ya =
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y BEAA Ll NPy TT I y:3‘“9‘4:0.382:x2
a 21 b 2 l
X, =-1.618="2 _ﬂEl X, =—0.618 = = _ﬂEZ
X, =+1.618 = o &, X, = +0.618 = a - By
E,=a-1.618f
E.=a -0.618p

“ Eo=a +0.618

“ Eo=ag +1.6188
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Butadiene Delocalization Energy

H
H,C C
’ \C/ N
c CH,
Epepe = EL(C,H)-2-E_(C,H
Del (4 6) (2 4) E4:(Z—1.618ﬂ
EE(C4H6):2(a +1.618ﬂ)+2(a +0.6184) Eo= g - 0618
)= .
=4 +4.4720 l
E,=a +0.618f
EE(C2H4):2(2a+2ﬂ):4a+4ﬂ l
E.o=a +1618f
Epupe = 40 +4.472,B—(4a +4ﬂ):0.472ﬂ
E oy ® 0.472(-200 k3 Imol)~-90kJ Imol H,C——CHj,
.. - ) . Ezza ‘/H
The additional stabilization of butadiene
compared to 2 ethylenes is a result of “
7t electron delocalization between the E,=a+f

two double bonds.
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O O k- X

Butadiene Wavefunctions

O =0yt Gt Gyt 041y

1 00 Xc, +¢, =0 -1.618¢c, +c¢, =0

x 10 _, C,+XC,+C, =0 X1:—1-618> c,—1.618c, +c, =0
1 x 1 C,+XC,;+¢C, =0 c,—-1.618c,+c, =0
0 1 x c;+xc, =0 c,—1.618c, =0

From first equation: ¢, =1.618¢

From second equation: ¢, =-¢,+1.618¢c,=-¢,+2.618¢c,=1.618¢,

. C,
From fourth equation: C, = =C,
1.618

0 = Cl()(l+1.618;(2 +1.618y,+ ;(4)
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0, = cl(;(1+1.618;(2 +1.618y,+4 14)

4
Normalization: Z ¢’ =1 (because all overlap integrals are 0)
i=1

/[ (1)7+ (L618)7 + (1.618)" + (1) | =1 = 7.236¢]

¢, =0.372

p,=0372(y, +1.6187,+1.6187,+ 7,

‘¢)1= 0,372, +0.6027, + 0,602, 403727, ‘

It is straightforward to perform the same procedure to determine
0y, 3 and ¢,.
The results are shown on the next slide.
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E,=a -1.618p 81 g 84

0,=0372y,-0602y,+0602y,-0372yp,

o BB

0,=0.6027,-03727,-0.3727,+0.602y,

8 %%

0,=0602y,+0372y,-0372y,-0.602yp,

I
Eo=a +1.6188

p,=0372y,+0.602y,+0.602y,+0372y, Slide 30




Butadiene: & Electron Charge and Bond Order

p,=03727,-0.6027,+0.6027,-03727,
p,= 06027, -0.3727,-0372y,+0.6027,
p,=0602y,+03727,-0.3727,-0.6027,
0, = 0372y, +0.6027,+0.6027,+03727,

!
!

orhs

n Electron Charge: g, = Z nc’
g,=2(0.372)" +2(0.602)" = 1I.00

g, =2(0.602)" +2(0.372)" =1.00
0, = 2(0.602) + 2(-0.372)" = 1.00
g, =2(0.372)" +2(-0.602)" =1.00

Actually, Butadiene (and the Allyl radical) belong to a class of
hydrocarbons called “Alternant hydrocarbons”, for which all g; = 1.0

All straight-chain polyalkenes are alternant hydrocarbons.
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0, =03727,-0.6027,+0.6027,- 03727,
0,=0.602y,-03727,-03727,+ 06027,

0, = 06027+ 0372y, - 0372, - 06025, !
0= 03727, + 0,602y, +0.602,+ 03727, 1}

orbs

t Bond Order: P Zn. i Civ

p, =2(0.372)(0.602)+2(0.602)(0.372)=10.896 ~ 0.90
p,, =2(0.602)(0.602)+2(0.372)(-0.372)=0.448~0.45

D, =2(0.602)(0.372) + 2(—0.372)(—0.602) =0.896 ~ 0.90

Note: Fora "full” = bond, p,,
For a pure ¢ bond, p,,

Therefore, the above bond orders reveal that the = bonds between
C,-C, and C;-C, are not as strong as in ethylene.

P,3; > 0 shows that there is significant & character in the
C,-C; bond. Slide 32



Part A: The Huckel Model and other Semiempirical
Methods

* Hickel Molecular Orbital Model
* Application to Ethylene

* Application to the Allyl Radical (C;Hc*)

* © Electron Charge and = Bond Order

* Application to Butadiene
* Introduction of Heteroatoms

* Semiempirical methods for sigma bonded systems
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Introduction of Heteroatoms

Introduction of a heteroatom such as N or O into a conjugated

n system requires different values of o and 3 than those used for
Carbon because the heteroatom has a different electronegativity;
l.e. Eneg(C) < Eneg(N) <Eneg(O).

It is useful to put the new values of the Coulomb and Resonance Integrals,
ay and By (where X is the heteroatom), in terms of the original o and .

The forms that is generally used are:
¢, =a+h/p
and fiy =k f

where hy and ky are constants that depend upon the heteroatom.
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a, =a+hp
Atom Ny
— N—— 0.5
N 1.5
o) 2.0
——O0 1.0
—Cl 2.0

cC—=0

C——~Cl

Kx

1.0

0.8
0.8

1.0

0.4
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A heteroatom can donate different numbers of electrons into the
n electrons depending upon its bonding.

Example: Nitrogen has 5 valence electrons

In pyridine, 4 of the 5 valence electrons are involved in
(a) 2 o bonds and (b) 2 electrons in the lone pair.

N

=

X

Therefore, this nitrogen will donate only 1 electron.

J

In pyrrole, 3 of the electrons will be involved in ¢ bonds.
This nitrogen will donate 2 electrons.
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Example: m Bonding in Pyrrole

This will illustrate how a heteroatom is handled in the
Hlckel Molecular Orbital Model.

H

Ny
C5/ \Cz
N/
C,—C,

For pyrrole, 2 electrons are donated to the & system.

The heteroatom parameters are: h, = 1.5 and k, = 0.8

Therefore: oy =a+h f=a+15f

Pu=kp=08p
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ay—E By 0
IBN a-E ﬁ
0 f a-E
0 0 S
N 0 0

a+158-E 088

0.8/ a—-E
0 p
0 0

0.84 0

The Secular Determinant
0 Py
0 0
0 (=0

a-E p

p a-E

0 0 083 x+15 0.8
B 0 0 08 X
a-E p 0 [=0 —> 0 1
B a-E 0 0
0 B a-E 08 0

ay=a+1.5f
By=08p

C5/ N \Cz
\

C4_C3

X B O O
X = O O
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ay=a+1.5f

x+15 08 0 0 0.8

08 x 1 0 0 f,=08p
0 1 x 1 0(=0

0 0 1 x 1

08 0 0 1 X

This is a 5x5 Secular Determinant, which can be expanded to yield
a fifth order polynomial equation, which can be solved to give:

(a) five values of x.
(b) five energies.
(c) five sets of coefficients.

But, I'm just really not in the mood right now.

Howsabout I just give you the results?

No Applause, PLEASE !!!
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H Wavefunctions and Energies

N, 0. =0, = 03727, - 06027, + 08027, - 03725,

\_/ 0, =0,=03T4y -0587y,+0292y,+0.292y,- 0587y,
0,=0,=0602y,+03727,-03727,-0602y,

Eg=E =a-1618) 0,=0,=05307,-01117,-05807,-05897,-0.111y,

0,=0,=0.1257,+03797,+0287y,+0287y,+0379,

a
Note: There are 6 electrons.
I l Count them.

Note: Actually, | used symmetry to simplify
I 1 the 5x5 determinant into a 2x2 and a
a

3x3 determinant

l I'll show you how at the end of
I the chapter.

Eo=E, =a+23208
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H nt Electron Charge

Cs/ \Cz
\ 0. =0,=0372y,-0.602y,+0.602y,-0372y,
C,—C3
p,=0,=0374y -0587y,+0292y,+0292y,-0587y,
E.=E =a-1.618p 0,=0, =0.602y,+03727,-0372y,-0.602y,
p,=0,=0530p,-0110y,-0589y,-0589y,-0.111y,
0,=0,=01257,+0379y,+0.287y,+0.2877,+0379y,
E,=E =0 -1.008p
orbs
H ©t Electron Charge: q, = Z nicfﬂ
E,=E =a+0618p g, =1.61 |
0, =1.04
H 0, =1.14
E,=E,=a+1.189p q,=1.14
H g =1.04
E = E =a+2320f 2.0, =5.97%6

U
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'

E =E, =a+2320

nt Bond Order

0, =0, =0372y,-06027,+0602,,-0372y,

0,=0,=0374y - 0587y, +0202y,+0.292y,-0587y,
0,=0,=0602y,40372y,-0372y,-0602y,

0, =0, 20530y, - 0000y, - 0589y, - 0,588, - 0,111,
0, =0,= 07257, + 0379y, + 0287y, + 02877, + 03797,

orbs

/IV :E: r]l iu Iv

D, =0.43
p,, =0.80
D, =0.58
D,. =0.80
D, =0.43

nt Bond Order:
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